431 research outputs found

    A model for vortical plumes in rotating convection

    Get PDF
    In turbulent rotating convection a typical flow structuring in columnar vortices is observed. In the internal structure of these vortices several symmetries are approximately satisfied. A model for these columnar vortices is derived by prescribing these symmetries. The symmetry constraints are applied to the Navier¿Stokes equations with rotation in the Boussinesq approximation. It is found that the application of the symmetries results in a set of linearized equations. An investigation of the linearized equations leads to a model for the columnar vortices and a prediction for the heat flux (Nusselt number) that is very appropriate compared to the results from direct numerical simulations of the full governing equation

    A Heuristic Framework for Next-Generation Models of Geostrophic Convective Turbulence

    Get PDF
    Many geophysical and astrophysical phenomena are driven by turbulent fluid dynamics, containing behaviors separated by tens of orders of magnitude in scale. While direct simulations have made large strides toward understanding geophysical systems, such models still inhabit modest ranges of the governing parameters that are difficult to extrapolate to planetary settings. The canonical problem of rotating Rayleigh-B\'enard convection provides an alternate approach - isolating the fundamental physics in a reduced setting. Theoretical studies and asymptotically-reduced simulations in rotating convection have unveiled a variety of flow behaviors likely relevant to natural systems, but still inaccessible to direct simulation. In lieu of this, several new large-scale rotating convection devices have been designed to characterize such behaviors. It is essential to predict how this potential influx of new data will mesh with existing results. Surprisingly, a coherent framework of predictions for extreme rotating convection has not yet been elucidated. In this study, we combine asymptotic predictions, laboratory and numerical results, and experimental constraints to build a heuristic framework for cross-comparison between a broad range of rotating convection studies. We categorize the diverse field of existing predictions in the context of asymptotic flow regimes. We then consider the physical constraints that determine the points of intersection between flow behavior predictions and experimental accessibility. Applying this framework to several upcoming devices demonstrates that laboratory studies may soon be able to characterize geophysically-relevant flow regimes. These new data may transform our understanding of geophysical and astrophysical turbulence, and the conceptual framework developed herein should provide the theoretical infrastructure needed for meaningful discussion of these results.Comment: 36 pages, 8 figures. CHANGES: in revision at Geophysical and Astrophysical Fluid Dynamic

    The role of Stewartson and Ekman layers in turbulent rotating Rayleigh-B\'enard convection

    Get PDF
    When the classical Rayleigh-B\'enard (RB) system is rotated about its vertical axis roughly three regimes can be identified. In regime I (weak rotation) the large scale circulation (LSC) is the dominant feature of the flow. In regime II (moderate rotation) the LSC is replaced by vertically aligned vortices. Regime III (strong rotation) is characterized by suppression of the vertical velocity fluctuations. Using results from experiments and direct numerical simulations of RB convection for a cell with a diameter-to-height aspect ratio equal to one at Ra∼108−109Ra \sim 10^8-10^9 (Pr=4−6Pr=4-6) and 0≲1/Ro≲250 \lesssim 1/Ro \lesssim 25 we identified the characteristics of the azimuthal temperature profiles at the sidewall in the different regimes. In regime I the azimuthal wall temperature profile shows a cosine shape and a vertical temperature gradient due to plumes that travel with the LSC close to the sidewall. In regime II and III this cosine profile disappears, but the vertical wall temperature gradient is still observed. It turns out that the vertical wall temperature gradient in regimes II and III has a different origin than that observed in regime I. It is caused by boundary layer dynamics characteristic for rotating flows, which drives a secondary flow that transports hot fluid up the sidewall in the lower part of the container and cold fluid downwards along the sidewall in the top part.Comment: 21 pages, 12 figure

    Geostrophic convective turbulence: The effect of boundary layers

    Get PDF
    Rayleigh--B\'enard (RB) convection, the flow in a fluid layer heated from below and cooled from above, is used to analyze the transition to the geostrophic regime of thermal convection. In the geostrophic regime, which is of direct relevance to most geo- and astrophysical flows, the system is strongly rotated while maintaining a sufficiently large thermal driving to generate turbulence. We directly simulate the Navier--Stokes equations for two values of the thermal forcing, i.e. Ra=1010Ra=10^{10} and Ra=5⋅1010Ra=5\cdot10^{10}, a constant Prandtl number~Pr=1Pr=1, and vary the Ekman number in the range Ek=1.3⋅10−7Ek=1.3\cdot10^{-7} to Ek=2⋅10−6Ek=2\cdot10^{-6} which satisfies both requirements of super-criticality and strong rotation. We focus on the differences between the application of no-slip vs. stress-free boundary conditions on the horizontal plates. The transition is found at roughly the same parameter values for both boundary conditions, i.e. at~Ek≈9×10−7Ek\approx 9\times 10^{-7} for~Ra=1×1010Ra=1\times 10^{10} and at~Ek≈3×10−7Ek\approx 3\times 10^{-7} for~Ra=5×1010Ra=5\times 10^{10}. However, the transition is gradual and it does not exactly coincide in~EkEk for different flow indicators. In particular, we report the characteristics of the transitions in the heat transfer scaling laws, the boundary-layer thicknesses, the bulk/boundary-layer distribution of dissipations and the mean temperature gradient in the bulk. The flow phenomenology in the geostrophic regime evolves differently for no-slip and stress-free plates. For stress-free conditions the formation of a large-scale barotropic vortex with associated inverse energy cascade is apparent. For no-slip plates, a turbulent state without large-scale coherent structures is found; the absence of large-scale structure formation is reflected in the energy transfer in the sense that the inverse cascade, present for stress-free boundary conditions, vanishes.Comment: Submitted to JF

    Optimal Prandtl number for heat transfer in rotating Rayleigh-Benard convection

    Get PDF
    Numerical data for the heat transfer as a function of the Prandtl (Pr) and Rossby (Ro) numbers in turbulent rotating Rayleigh-Benard convection are presented for Rayleigh number Ra = 10^8. When Ro is fixed the heat transfer enhancement with respect to the non-rotating value shows a maximum as function of Pr. This maximum is due to the reduced efficiency of Ekman pumping when Pr becomes too small or too large. When Pr becomes small, i.e. for large thermal diffusivity, the heat that is carried by the vertical vortices spreads out in the middle of the cell, and Ekman pumping thus becomes less efficient. For higher Pr the thermal boundary layers (BLs) are thinner than the kinetic BLs and therefore the Ekman vortices do not reach the thermal BL. This means that the fluid that is sucked into the vertical vortices is colder than for lower Pr which limits the efficiency of the upwards heat transfer.Comment: 5 pages, 6 figure

    A model for vortical plumes in rotating convection

    Get PDF
    In turbulent rotating convection a typical flow-structuring in columnar vortices is observed. In the internal structure of these vortices several symmetries are approximately satisfied. A model for these columnar vortices is derived by prescribing these symmetries. The symmetry constraints are applied to the Navier-Stokes equations with rotation in the Boussinesq approximation. It is found that the application of the symmetries results in a set of linearized equations. An investigation of the linearized equations leads to a model for the columnar vortices, and a prediction for the heat flux (Nusselt number) that is very appropriate compared with results from direct numerical simulations of the full governing equations

    OSA-trendrapport 1987:actuele informatie over de arbeidsmarkt

    Get PDF

    Saturation of front propagation in a reaction-diffusion process describing plasma damage in porous low-k materials

    Get PDF
    We propose a three-component reaction-diffusion system yielding an asymptotic logarithmic time-dependence for a moving interface. This is naturally related to a Stefan-problem for which both one-sided Dirichlet-type and von Neumann-type boundary conditions are considered. We integrate the dependence of the interface motion on diffusion and reaction parameters and we observe a change from transport behavior and interface motion \sim t^1/2 to logarithmic behavior \sim ln t as a function of time. We apply our theoretical findings to the propagation of carbon depletion in porous dielectrics exposed to a low temperature plasma. This diffusion saturation is reached after about 1 minute in typical experimental situations of plasma damage in microelectronic fabrication. We predict the general dependencies on porosity and reaction rates.Comment: Accepted for publication in Phys. Rev.

    Laboratory Exploration of Heat Transfer Regimes in Rapidly Rotating Turbulent Convection

    Get PDF
    We report heat transfer and temperature profile measurements in laboratory experiments of rapidly rotating convection in water under intense thermal forcing (Rayleigh number RaRa as high as ∼1013\sim 10^{13}) and unprecedentedly strong rotational influence (Ekman numbers EE as low as 10−810^{-8}). Measurements of the mid-height vertical temperature gradient connect quantitatively to predictions from numerical models of asymptotically rapidly rotating convection, separating various flow phenomenologies. Past the limit of validity of the asymptotically-reduced models, we find novel behaviors in a regime we refer to as rotationally-influenced turbulence, where rotation is important but not as dominant as in the known geostrophic turbulence regime. The temperature gradients collapse to a Rayleigh-number scaling as Ra−0.2Ra^{-0.2} in this new regime. It is bounded from above by a critical convective Rossby number Ro∗=0.06Ro^*=0.06 independent of domain aspect ratio Γ\Gamma, clearly distinguishing it from well-studied rotation-affected convection.Comment: 14 pages, 7 figure
    • …
    corecore